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CHAPTER 1: 

 INTRODUCTION 

Overview 

The aim of digital human models (DHM) is to create a virtual representation of a 

person.  DHM are used to model how the human will react and interact to stimulus within 

the environment.  The stimulus could be a 3D computer aided design (CAD) design of 

some environment, or a force being applied to the DHM.  DHM are used to interact with 

the stimulus and provide feedback.  The feedback (muscle force, joint angles, discomfort, 

etc.) can be interpreted by the user and used to redesign the environment such that the 

DHM performs in an efficient and biomechanically safe manner.  Being able to test and 

redesign environments before being implemented in the real world has great implications 

when it comes to designing a manufacturing assembly line or designing the interface 

between humans and motor vehicles.  DHM allow modelers to test their designs and 

quickly determine if design problems are present.  These problems can be quickly 

identified and corrected before the design is put into action.  Thus, DHM are useful for 

with the useful for correcting modeling mistakes while the product or production line is 

still in developmental stages instead of after the product or production line has been built.  

Catching these mistakes early helps reduce production cost and can in turn make the 

products cheaper for the consumer.   

In addition to analyzing products, commercially available DHM’s such as 

SantosTM, JackTM, and AnybodyTM analyze how workers interact with their environments 

and are used to help protect the workers from getting injured.  There are many aspects of 

ensuring workers can perform their tasks safely such as limiting worker exposures to: 

awkward postures, heavy lifting, contact stresses, extreme heat/cold, repetitive motions, 

and vibration.  Another important factor is limiting the amount the worker fatigues while 
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performing his task throughout the work day.  This thesis will focus on developing a 

muscle fatigue model for use in SantosTM, The University of Iowa’s DHM.  

Digital Human Modeling 

One of the main assumptions for DHMs is that the human body can be modeled 

as a kinematic system (Yang et al., 2004), where link lengths are connected by single 

degree of freedom (DOF) joints.  For example, to model a three dimensional joint, such 

as the shoulder, three 1-DOF joints are stacked on top of each other to achieve the 

required DOFs.   

One such DHM, SantosTM, is being developed by the Virtual Soldier Research 

(VSR) group at The University of Iowa.  SantosTM is based on predictive dynamics, 

which, unlike other DHM, uses optimization to predict how a human would reach or 

perform a task.  Most DHMs (e.g. JackTM) use a database of motion capture information 

that can be played back.  While motion capture is effective for visualizing the motion, the 

forces and joint torques the body produces cannot be estimated from this file.  SantosTM 

predicts how the human would walk and provides the user with force and joint torque 

information.  This is important when determining how performing a task in the modeled 

virtual environment will impact the actual worker once the process is put into practice. 

For SantosTM to be able to use predictive dynamics, his kinematic “skeleton” is set 

up in accordance to the Denavit-Hartenberg (D-H) method (Denavit and Hartenberg, 

1955).  The D-H method allows SantosTM to perform postural analysis using multi-

objective optimization (MOO) to find the position of his appendages (e.g. arms and legs) 

with respect to his global reference system (located at the pelvis) (Yang et al., 2004).   

The use of MOO allows SantosTM to predict how humans will perform a task 

subject to some restraint.  Currently, SantosTM outputs a force history for each joint while 

the task is being performed.  The force history data can be used to predict how SantosTM 

would fatigue throughout the task.  However, currently there is no predictive muscle 
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fatigue analysis tool incorporated into SantosTM, thus this thesis will focus on the 

development and validation of a muscle fatigue model that can predict the endurance 

time and the percent torque decline in muscle force due to intermittent isometric muscle 

contractions.   

Muscle Fatigue 

Muscle fatigue is a complex physiological phenomenon that can be defined as 

“any reduction in force generation in response to a voluntary muscle contraction” 

(Gandevia, 1992; Chaffin et al., 2006).  There are two classifications of fatigue that 

ergonomists and researchers are interested in.  The first is peripheral fatigue which refers 

to the change in “the muscle’s contractile properties and transmission of electrical signals 

across the sarcolemma” (Stein, 1974; Gandevia, 2001; Petersen et al., 2007), while 

central fatigue refers to the “progressive reduction in voluntary activation of a muscle 

during exercise” (Gandevia, 2001; Petersen et al., 2007).  This thesis will focus on the 

combined measured effects (reduction in produced muscle force) of peripheral fatigue 

and central fatigue. 

Literature Review of Muscle Fatigue Models 

Researchers have tried to understand muscle, muscle mechanics and anatomy 

since Leonardo Da Vinci’s Vitruvian Man around 1490.  Since that time researchers 

attempted to understand what makes muscles contract and produce force.  (Bendall, 

1952), first studied the relationship between muscle contraction and adenosine 

triphosphate (ATP).  These early models first focused on why muscles contract and 

muscle response models that are still used today such as the Hill muscle model that uses a 

spring element in parallel with a contractile element and spring element is series (Figure 

1- 1) to explain the muscle response (Hill, 1938).  This muscle model is useful for 

estimating stress and muscle force, but Hill’s model is unable to model changes in force-
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producing capability over time (i.e., muscle fatigue) and thus is not useful for our current 

purpose. 

Once the technology became available muscle models focused on modeling the 

action lines of muscles to show a 3-D representation of the musculoskeletal system 

(Charlton and Johnson, 2001; Gatton et al., 2001; Desailly et al., 2010).  These models 

along with finite element modeling (Van Der Helm et al., 1992; Van Der Helm, 1994) 

have developed a sophisticated approach to determining how muscle force is transferred 

to the tendons and bone attachments.  However, these models take a significant amount 

of time to run and assumptions have to be made regarding the load-sharing between 

muscles as the musculoskeletal system is redundant.  For example if the isometric 

maximal voluntary muscle force is being measured at the elbow using a dynamometer, 

the force generated by the subject can be determined by taking the average of three 

MVCs with a sufficient rest period between each contraction.  The muscle models 

however will have to partition how much of that MVC is produced by: Biceps Brachii, 

Brachialis, Flexor Carpi Radialis, Flexor Carpi Ulnaris, Brachioradialis, and the Pronator 

Teres.  Since each of these muscles cannot be individually measured there will be some 

error in the model.  These models also focus on determining muscle force and are not 

applicable to modeling muscle fatigue per se.   

Muscle fatigue has been studied since the late 1800’s (Gandevia, 2001) and 

research has mainly focused on the time to fatigue at a variety of percent maximum 

voluntary contractions (Rohmert, 1960; Monod and Scherrer, 1965; Hagberg, 1981; 

Huijgens, 1981; Sjøgaard, 1986; Rose et al., 2000; Garg et al., 2002; El Ahrache et al., 

2006).  The common methodology for these studies includes testing on a dynamometer to 

ensure isometric testing conditions at a joint (e.g. ankle, elbow, knee, etc).  The subject is 

then instructed to perform three MVCs.  The researchers then take the average of these 

three maximum efforts to determine a reference point for each subject.  The subjects are 

then asked to perform contractions at some percent of max until they can no longer 
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produce the required force.  The time where the force production can no longer be 

maintained is defined as the endurance time (ET). 

One of the first people to look at the endurance time of muscles over a range of 

MVC’s was Walter Rhomert in 1960.  Rhomert discovered that ET is a nonlinear 

function of contraction intensity (Rohmert, 1960) and developed response cures that have 

been coined “Rhomert Curves”.   

While there are several approaches to modeling muscle fatigue, a statistical 

approach is rooted in Rhomert’s original paper (Rohmert, 1960).  Since Rohmert’s 

original paper, multiple statistical muscle fatigue models have been developed to predict 

the endurance time (ET) of isometric tasks.  Table 1- 1shows a list of maximum 

endurance time (MET) regression models that have been developed by a variety of 

authors.   

These models have been used to validate other isometric regression models that 

have recently been developed (El Ahrache et al., 2006; Ma et al., 2009).  Unfortunately, 

most of these MET regression models relied on relatively small sample sizes (El Ahrache 

et al., 2006), thus the models may not be reflective of normative fatigue behavior.  To 

address this limitation, a systematic review and meta-analyses was recently completed to 

compile all available fatigue data on isometric contractions to definitively determine 

optimal intensity-ET curves. A total of 194 publications for isometric contractions were 

included, which provided sufficient data to curve-fit intensity- ET equations for several 

joint regions, including: ankle, knee, trunk, shoulder, elbow, and wrist/hand (Frey Law 

and Avin, 2010).  The results of the meta-analysis not only validated the nonlinear time-

endurance relationship first proposed by Rhomert, 1960, but also found that each joint 

region fatigues at a different rate.  The discovery highlights the need for predictive 

muscle fatigue models to include these variations in joint regions, and provides a 

reasonable “gold standard” to use for validating predictive fatigue models. 
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Recently (Xia and Frey Law, 2008) provided a MET muscle fatigue model that 

can be used with digital humans that use the Modified Denavit-Hartenberg (modified 

DH) notation system which is the basis of the SantosTM kinematic model.  However, (Xia 

and Frey-Law, 2008)’s model has not yet been validated for isometric, intermittent, or 

dynamic tasks.  The goal of this thesis is to validate the fatigue model proposed by (Xia 

and Frey Law, 2008) for both isometric static and intermittent contractions. 

Specific Aims 

A three compartment analytical muscle fatigue model first proposed by (Liu et al., 

2002) (Figure 1- 2) was recently modified with a controller to allow sub maximal tasks to 

be evaluated (Xia and Frey Law, 2008).   The fatigue rate (F) controls the rate of flow 

from the Active compartment to the Fatigued compartment, and the recovery rate (R) 

controls the rate of flow from the Fatigued compartment to the Resting compartment 

(Figure 1- 2). 

The model proposed in (Xia and Frey Law, 2008) did not include optimized F and 

R parameters that reasonably predicted the fatigue and recovery rates.  Thus the first aim 

of this thesis is to find optimal model parameters to predict endurance times for each joint 

within the 95% confidence interval from the meta-analysis performed by Frey Law and 

Avin, 2010 (Chapter 2).  We hypothesize the model with the two optimized parameters 

will be able to reproduce the non-linear intensity-ET relationships found by Frey Law 

and Avin, 2010.  To accomplish this aim, a monte-carlo simulation (i.e. grid-search 

strategy) of the model was run with a range of F and R parameters.  This provided a large 

grid of possible solutions that can be compared to the meta-analysis data (Frey Law and 

Avin, 2010).  From this large grid search method the optimal F and R parameters were 

determined.  This provided validation for static isometric tasks for the model, since the 

meta-analysis data was for static isometric contractions.   
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The next aim for the model validation is to perform a meta-analysis for 

intermittent tasks, since the types of tasks found in industry are not isometric. Instead 

tasks found in industry are more intermittent and dynamic in motion.  We operationally 

define an intermittent contraction as a repeated series of static isometric contraction held 

for a time followed by a rest period.  The total time of the contraction and rest periods 

that define an intermittent contraction is the cycle time (CT).  The percentage of time in 

either the contraction or rest period of the cycle time is the duty cycle (DC).  A dynamic 

contraction is similar to an intermittent contraction, but there is no measureable (greater 

than 1 second) rest period between contractions.   

We hypothesize an empirical model can be developed using DC and MVC to 

predict the percent toque decline.  To accomplish this aim, the meta-analysis will focus 

on muscle force decline (% decline) due to intermittent tasks at four discrete time points.  

This approach was chosen since intensity-ET relationships for low DC and low MVC’s 

are nonexistent due to the task time taking greater than an hour.  Thus in order to get 

enough data points (>3) to create an empirical model, % decline data was chosen.  Four 

discrete time points (30, 60, 90, and 120 seconds) were chosen, so the % decline at a 

particular MVC and DC could be compared across studies.   

Once completed, the meta-analysis empirical models of % decline as a function of 

DC and MVC were created for each joint and at each discrete time point, where there 

were more than 3 data points were found (i.e. need three points to define a plane).  95% 

confidence intervals (CI) were then calculated for each 3D surface and compared to the 

data points to determine how accurate the empirical models predict the data. 

The final aim for the model validation is to compare these empirical models to the 

model predictions.  Similar to the optimization step, this will show how the model 

compares to the 95% CI for fatigue due to intermittent tasks.  We hypothesize the 

optimized F and R parameters for sustained isometric contractions will also be valid for 

intermittent tasks.  The prediction models were also compared to the found data points 
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and a resulting 95% CI was also found to determine how well the prediction model can 

predict the meta-analysis data. 

From these validation steps, this thesis hopes to provide validation that the model 

proposed by (Xia and Frey Law, 2008) can accurately predict static intensity-ET curves 

and % decline responses for intermittent tasks.   

Terminology 

This thesis presents the validation and continued development of the muscle 

fatigue model first proposed by (Liu et al., 2002) and later modified by (Xia and Frey 

Law, 2008).  The description of the model includes terminology from various fields.   

• Maximum Voluntary Contraction (MVC):  The maximum about of voluntary 

muscle force a subject can produce at a given joint 

• Cycle Time (CT): The total amount of time the task takes to complete 

• Duty Cycle (DC): A percentage of the cycle time that indicates how much time 

the subject is active compared to inactive (e.g. %50 DC at a 30s CT means the 

subject contracted for 15s rested for 15s). 

• % Decline: the amount of force decline from 100% 

• Isometric Contractions: The muscle force at a joint is found by the subject 

pulling/pushing against a fixed lever arm (e.g. the muscle length and joint angle 

are constant). 
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Table 1- 1: Adapted list of MET muscle fatigue models from (El Ahrache et al., 2006) to 
include (Ma et al., 2009) and (Frey Law and Avin, 2010) 

General Models MET Equations (minutes) 

(Rohmert, 1960) MET = -1.5 + (2.1/fMVC) - (0.6/ (fMVC)2) + (0.1/(fMVC)3) 

(Monod and Scherrer, 1965) MET = 0.4167 + (fMVC – 0.14)-2.4 

(Huijgens, 1981) MET = 0.865 [(1- fMVC) / (fMVC - 0.15)]1/1.4 

(Sato et al., 1984) MET = 0.3802 (fMVC – 0.04)-1.44 

(Manenica, 1986) MET = 14.88 e(-4.16 f
MVC

) 

(Sjøgaard, 1986) MET = 0.2997 (fMVC)-2.14 

(Rose et al., 2000) MET = 7.96 e(-4.16 f
MVC

) 

(Ma et al., 2009) MET = ln(fMVC)/(k (fMVC)) 

(Frey Law and Avin, 2010) MET = 0.3653 (fMVC)-1.98 

*fMVC is the task intensity 
**k is the fatigue ratio (Ma et al., 2009) 
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Figure 1- 1: A schematic representation of Hill’s muscle model. CE is the contractile 
element, SE is the spring in series element and PE is the spring in parallel 
element (Hill, 1938) 

CE 

SE 

PE 

F 

F 



11 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- 2: A schematic drawing of the three compartment model, 
adapted from (Xia and Frey Law, 2008). 
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CHAPTER 2:  

A THREE-COMPARTMENT MUSCLE FATIGUE MODEL 

ACCURATELY PREDICTS JOINT-SPECIFIC MAXIMUM 

ENDURANCE TIMES FOR SUSTAINED ISOMETRIC TASKS 

Introduction 

Muscle fatigue is considered a risk factor for musculoskeletal injury (Sejersted 

and Sjøgaard, 2000), yet few predictive tools are available to model this ubiquitous 

phenomenon.  The development of localized muscle fatigue has classically been 

described by the intensity – endurance time (ET) curve in the ergonomic literature 

(Rohmert, 1960), sometimes referred to as “Rohmert’s curve”.  In the past 50+ years, 

several authors have proposed updated versions of this classic nonlinear curve (Monod 

and Scherrer, 1965; Hagberg, 1981; Huijgens, 1981; Rose et al., 2000; Garg et al., 2002). 

More recently, comparisons between several of these models observed that equations 

varied by joint region (El Ahrache et al., 2006; Ma et al., 2009; Ma et al., 2011).  

Likewise, a large meta-analysis of 194 publications involving experimental fatigue data 

confirmed joint-specific intensity-ET relationships (Frey Law and Avin, 2010).  Thus, 

ETs vary as a function of task intensity, but also based on the joint region involved.   

These intensity-ET statistical relationships have been well documented and 

provide one practical tool to predict maximum ET.  However this statistical approach is 

unable to predict fatigue outcomes beyond this single measure, such as the time course of 

fatigue development, the relative decline in force producing capability for a given task 

duration, or force recovery during rest periods.  Thus more comprehensive, flexible 

models are needed to represent the complexity of localized muscle fatigue behavior. 

We recently proposed a three-compartment, predictive fatigue model, consisting 

of active (MA), fatigued (MF), and resting (MR) muscle states, to predict the decay and 
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recovery of muscle force (Xia and Frey Law, 2008). We adapted this approach from a 

similar model first proposed by (Liu et al., 2002) with the addition of a feedback 

controller, C(t), and a variation of the ‘flow patterns’ between muscle states.  These 

adaptations allow sub-maximal contractions and rest intervals to be modeled, yet 

preserves the use of two key parameters to define overall model behavior (fatigue, F, and 

recovery, R).  While this model was shown to qualitatively reproduce expected 

curvilinear intensity-ET relationships (Xia and Frey Law, 2008), it has yet to be validated 

against experimental data.   

There are many possible fatigue measures that could be used to test the accuracy 

of this model for predicting localized muscle fatigue. However, the well-characterized 

intensity- ET relationship (Frey Law and Avin, 2010) provides a useful metric as a first 

step in evaluating fatigue during simple, sustained isometric contractions.  Further, 

sustained isometric tasks are commonly used to study fatigue behavior in humans (e.g., 

(Bystrom and Sjøgaard, 1991; Shahidi and Mathieu, 1995; Hunter et al., 2002)) as they 

provide a well-defined methodology.  Thus, the primary purposes of this study were to: 

1) determine optimal model parameter values, F and R, to predict joint-specific intensity 

– ET curves for sustained isometric contractions, and 2) assess the accuracy of the model 

using these parameter values.    

Methods 

Biophysical Model 

The three-compartment model involves three differential equations (Equation 2- 

1-Equation 2- 3) describing the rate of “flow” from one muscle state to the adjacent state 

(Figure 1- 1).  While the original Liu, et al. (2002) model proposed fatigued muscle 

would recover back into the active state, we have operationally defined the model such 
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that fatigued muscle recovers to the resting state.  In addition, we have added a feedback 

proportional controller to define the activation and deactivation of active muscle (C(t)). 

These changes alter the defining differential equations from the original equations 

proposed by Liu et al (2002) and require discrete analyses to solve for the three muscle 

states at each time point.   

Equation 2- 1: Resting state 

dMR/dt = -C(t) + R*MF 

Equation 2- 2: Active state 

dMA/dt = C(t) - F*MA 

Equation 2- 3: Fatigued state 

dMF/dt = F*MA - R*MF 

Where: 

C(t) = the controller denoting the muscle activation-deactivation drive;   

F = fatigue parameter defining the rate of change between the active and fatigued 

compartments; and 

R = recovery parameter defining the rate of change between the fatigued and 

resting compartments. 

The controller attempts to match the active muscle compartment (MA) to the task 

requirements (e.g. target task intensity, TL, as a percent of maximum, % max), which for 
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this investigation ranged from 10% to 95% max.  The muscle activation or deactivation 

by the controller is defined for three possible conditions (Equation 2- 4-Equation 2- 6), 

showing the dependence of C(t) on the relative “volumes” of the three compartments 

relative to the target task intensity level (TL), see Xia and Frey Law, (2008) for more 

detail.   

Equation 2- 4: If MA < TL and MR > (TL - MA) 

C(t) = L * (TL – MA) 

Equation 2- 5: If MA < TL and MR < (TL - MA) 

C(t) = L * MR   

Equation 2- 6: If MA ≥ TL 

C(t) = L * (TL – MA) 

Where: L is an arbitrary constant tracking factor to ensure good system behavior.  

We used a value of 10 for all simulations based on our previous sensitivity analysis (Xia 

and Frey Law, 2008).   

The initial model was developed using Simulink (Xia and Frey Law, 2008) but 

was revised into Matlab (Mathworks, Natick, MA) for greater flexibility.  The differential 

equations were solved using the built in function, ‘c2d,’ to transform them into discrete 

space, in 1 sec time intervals (1 Hz).  Thus, the precision of the model is limited to +/- 1 

sec using this step size.  
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While the model could be employed at multiple levels of fidelity, ranging from 

single fiber to whole muscles, it is employed here at the ‘joint-level’.  Similarly, most 

human fatigue studies are performed in vivo at the ‘joint-level’.  The joint-level model 

assumes each muscle state represents the relative proportion of the total joint torque 

capability (% max intensity). While this could be considered to be the proportion of total 

motor units available about a joint, technically different motor unit types produce 

different levels of torque.  In addition, biomechanical influences such as muscle length 

and joint moment arm influence total torque production.  Thus generalizing the model to 

represent relative torque (% max) rather than simply motor unit activation or muscle 

force provides a means to better represent the various biomechanical and physiological 

influences on joint torque, and matches experimental methodologies in the fatigue 

literature (i.e, tasks performed at relative intensities).  

Endurance time was used as the primary model outcome variable due to the 

extensive data available in the literature (see below) on ET as a function of relative task 

intensity.  Predicted ET was operationally defined as the time at which the active muscle 

state could no longer maintain the target intensity (MR + MA < TL).   

Parameter Optimization 

To determine optimal F and R parameter values, a global optimization search 

strategy was employed.  While gradient-based optimization techniques are often useful 

for minimizing differences between predicted and expected results as a function of time, 

this approach was not feasible for optimizing a single outcome assessed across multiple 

simulations (i.e. task intensities).  Repeated model simulations with varying F and R 

values were performed, with the resulting model predictions compared to expected 

values.   The optimization problem was optimized as follows: 
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Equation 2- 7: Optimization formulation 

Find: F and R 

To minimize objective function:  

Absolute Error = ( )9 Pr

1
|| , ||edicted Actual

iii
x F R x ε

=
− ≤∑  

Subject to:  

F > 0; 

R > 0; 

Where: 

xi = endurance time at the ith intensity (1=10%, 2=20%, … ,9=90% of maximum) 

A two-stage grid-search strategy was used. The first stage involved a course grid 

of potential F and R values; each possible permutation was used to predict maximum ET 

for nine task intensities ranging from 10 – 90% of maximum effort in 10% increments.  

This initial grid used 1000 F and 1000 R values ranging from 0.0001 to 0.1 in increments 

of 0.0001, for a total of 9,000,000 simulations (1,000,000 F and R combinations for each 

of the 9 task intensities).  The second stage utilized a more refined grid of possible F and 

R values focusing in on the optimal regions observed for each joint in the first stage of 

simulations. A smaller range of F and R values were selected around the initial “best” F 

and R values (joint-specific), in increments of 0.00001.  This produced 8572 additional 

simulations for each of the 9 relative intensities, for a total of 77,148 simulations in the 

second stage.  Thus a total of 9.08 million simulations were run assessing maximum ET 

for each F and R combination. 

The optimal F and R parameter values from the each search stage were 

determined as those producing the least error compared to the criterion intensity-ET 

relationships (see below) available for six joint regions: ankle, knee, trunk, shoulder, 

elbow, hand/grip, as well as a “general” intensity-ET curve (Frey Law and Avin, 2010).  
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Error was calculated as the root mean square (RMS) between the predicted and expected 

ETs across the 9 task intensities.  Optimal F and R values were defined as those 

producing the least mean RMS error.  In addition, model predictions at each intensity 

level were compared to the expected 95% prediction intervals previously observed due to 

normal variability (Frey Law and Avin, 2010). We chose a priori to define the minimum 

criterion for “adequate” model predictions as having a majority of the 9 optimized ETs 

fall within the 95% prediction intervals for each joint region (i.e., minimum of 5 of 9 

intensities).   

Criterion Intensity-ET Relationships 

Numerous authors have proposed intensity-ET models, or statistical fatigue 

models, to represent the single fatigue outcome, maximum ET (Monod and Scherrer, 

1965; Hagberg, 1981; Huijgens, 1981; Rose et al., 2000; Garg et al., 2002).  However, 

these models were based on fatigue studies involving relatively small sample sizes, e.g., 

ranging from 5 to 38 participants.  To ascertain a ‘gold standard,’ or expected intensity-

ET relationship, for comparison to the predicted ETs from our biophysical model, we 

used the statistical models developed previously based on data from a meta-analysis of 

the available literature on sustained isometric contractions (Frey Law and Avin, 2010).   

The results of this study have been well-described, but will be summarized briefly 

here.  A total of 194 publications were found that reported maximum ET for relative 

intensity tasks (i.e., % of maximum) about a single joint for voluntary contractions.  

These studies included 369 distinct intensity-ET data points as several studies reported 

ETs for multiple joints and/or task intensities.  All studies included healthy young adults 

(18 - 55 yrs), with a range of reported activity levels (untrained to elite athletes).  

Sufficient data was available to curve-fit the intensity-ET relationship for six joint 

regions: ankle, knee, trunk, shoulder, elbow, and hand/grip and an overall general model 
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(all joint regions combined).  Total sample sizes, summed across studies for each joint 

were as follows:  ankle (n=207, 20 studies, 40 data points), knee (n=875, 56 studies, 93 

data points), trunk (n=307, 17 studies, 33 data points), shoulder (n=176, 13 studies, 17 

data points), elbow (n=838, 60 studies, 126 data points), and hand/grip (n=754, 40 

studies, 58 data points).  A power curve best fit the intensity-ET relationship for each 

joint (see Equation 2- 7), with mean and 95% prediction intervals determined using 

Matlab Optimization Toolbox.   

Equation 2- 8: Power-curve example 

ET = a*(task intensity)b 

Several of the joint-specific curves were significantly different from one another 

(p < 0.05). The order of the most fatigue-resistant to the most fatigable was: ankle, trunk, 

knee, elbow, hand/grip, and shoulder, respectively (Frey Law and Avin, 2010).  The 95% 

prediction intervals for each joint ranged from 30 to 96% of the predicted ET (overall 

mean 48%), demonstrating the inherent variability observed in muscle fatigue between 

individuals. 

Parameter Analyses 

Finally, the ratios between the optimal F and R parameter values (fatigue to 

recovery rate ratios) were calculated for each joint region and a sensitivity analysis was 

performed to examine the influence of changes in F and R on the intensity-ET 

predictions.  While our model differs somewhat from the original model proposed by Liu, 

et al. (2002) we tested whether an analogous equation relating the F and R values to an 

intensity asymptote (see Equation 2- 8) matched our simulated model predictions. The 

simulated asymptote for each joint was determined by running the model at decreasing 
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task intensities until an ET could no longer be observed (i.e., the active muscle state 

plateaued at a level just above the task intensity).     

Equation 2- 9: Asymptote calculation 

asymptote (% max)  = (1/ (F/R + 1)) * 100%  

Model Evaluation  

Using the joint-specific optimized parameter values, the model was then 

evaluated across a new set of 9 task intensities (15 – 95 % max, in increments of 10%) to 

test the resulting model accuracy using conditions not involved in the optimization 

process.  The mean RMS errors (sec) and mean relative errors (%) were determined as 

described previously for the optimized intensities.   

Results 

The optimal, joint-specific, F and R values found as a result of the global 

optimization search strategy are provided in Table 2- 1.  The model well surpassed our 

minimum criterion for each joint, with a minimum of 7 out of 9 ET predictions falling 

within the expected 95% prediction intervals (using the ‘optimization task intensities’).  

Across each joint, the highest intensities (> ~80% max) were the most challenging to 

maintain within the narrow 95% prediction intervals, typically under-predicting expected 

ETs (see Figure 2- 1). 

The resulting ET errors at the original optimization intensities (i.e., 10 – 90% 

max, by 10% increments) were small (see Table 2- 2).  When evaluating the model 

accuracy at a separate set of test intensities (i.e. 15 – 95% max, by 10% increments) the 

errors increased compared to the optimization intensities, but remained below expected 
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variation (see Figure 2- 1).  Relatively minor differences were observed in ET errors 

between the different joint regions.  Thus, the model performed nearly equally well 

across different muscle groups despite varying fatigue properties. 

The observed and predicted intensity asymptotes were in agreement with one 

another across the joint regions (see Table 2- 1).  This finding indicates the relationship 

between F and R parameter values and the ET asymptote proposed for the original Liu et 

al (2002) biophysical fatigue model holds for our modified model, despite the changes 

made and lack of an analytical solution.  Intensity asymptotes ranged from 6 to 10% max 

for both the observed, simulated and theoretical predictions based on the optimal F and R 

values.   

F and R parameter sensitivity analysis was performed relative to one joint region 

(elbow) for ranges of F and R values observed across the joint regions (see Figure 2- 2, 

panels A and B).  Changes in F caused relatively large changes in ET at the lower 

intensities (about a fixed R value), thus altering the inflection points of the intensity-ET 

curves (and ultimately the intensity asymptote).  The effects of changes in R (about a 

fixed F value) predominately influenced the spread of ETs, particularly at the lowest 

contraction levels.  Thus the fatigue rate appears to have the largest influence on the 

curvature of the intensity-ET relationship, whereas the recovery rate parameter refines the 

ET response within that curvature.   

Discussion 

The main finding of this study is that a parsimonious three-compartment 

biophysical fatigue model can accurately predict fatigue, i.e., maximum ETs, for 

sustained isometric contractions across a wide range of task intensities for several distinct 

joint regions.  While this fatigue model is inherently able to predict multiple aspects of 

muscle fatigue, including the time course of fatigue development and recovery, we were 
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able to validate the model using the outcome variable, ET, due to the extensive normative 

data available for comparison.   

The joint-specific optimal fatigue and recovery parameter values reproduced the 

expected nonlinear intensity-ET relationships reasonably well.  The mean RMS and 

relative errors (i.e., errors relative to expected ETs, see Table 2- 2) ranged from 3 to 28 

sec and 2 to 20%, respectively, which is well within expected ET variation. Our prior 

meta-analysis demonstrated the expected variation in ET (i.e., the percent difference 

between the 95% PI curve and the mean expected curve for ET) ranged from 29-47% 

(Frey Law and Avin, 2010).  Thus, all of the mean model errors are well-below the 

normal variation expected between groups of individuals.  Further, this estimate of 

normal variation in fatigue development is based on the culmination of multiple study 

means which is likely less than the underlying variation between individuals.   

The F and R values generally varied as one might predict based on the expected 

fatigue resistance between joint regions, suggesting good construct validity for the model.  

For example, the most fatigue-resistant muscle group region we considered is the ankle 

(Frey Law and Avin, 2010), where the soleus and tibialis anterior muscles about the ankle 

have a greater proportion of slow-twitch, type I muscle fibers than observed in most other 

muscles (Johnson et al., 1973).  Analogously the optimal F value for the ankle was the 

lowest of the 6 joints, indicative of a slow fatigue rate for the biophysical model.  The 

most fatigable joint region we considered is the shoulder based on experimental data 

(Frey Law and Avin, 2010), which likewise had the fastest fatigue rate (i.e., highest F 

value) of the 6 joints.  Thus, the model is able to realistically represent between-joint 

differences in fatigue rates through the optimal parameter values.   

Overall, the fatigue to recovery rate (F:R) ratios varied from 10 to 15, indicating 

muscles can be thought of as fatiguing 10 to 15 times faster than they are able to recover 



23 
 

 
 

during a sustained contraction (Table 2-1).  (Frey Law and Avin, 2010) found that 

“although intensity dependent to some degree, the shoulder is the most rapidly fatigable 

followed by the knee, grip and elbow, trunk and the ankle is the most fatigue-resistant.”  

However, the observed F:R ratio were found to be around 10.  This is to suggest that the 

F:R ratio is not the significant factor determining which muscle group will more quickly 

fatigue.  The hand/grip joint region is the lone outlier in this observation, but this could 

be due to many different tasking protocols  the “hand and grip studies involving the first 

dorsal interosseus (FDI), abductor pollicis brevis (APB), adductor pollicis (ADP), and 

transverse volar type grip” (Frey-Law and Avin, 2010) where collapsed to create the 

empirical intensity-ET curve.  This variety in the studies used to create the hand/grip 

intensity-ET curve and 95% PI could explain the deviation from an F:R ratio of 10. 

The predicted intensity asymptotes ranged from 6 to 9 % of maximum.  This is 

consistent with previous statistical intensity-ET models, which observed asymptotes 

ranging from 4 to 15 % of maximum (Rohmert, 1960; Monod and Scherrer, 1965; 

Huijgens, 1981; Sato et al., 1984; Ma et al., 2011), but different from those based on F 

and R values determined by Liu, et al. (2002) for maximum intensity tasks (22 – 33% 

max).  Conversely, the intensity-ET power equations fit to the meta-analyses data (Frey 

Law and Avin, 2010) do not have explicit asymptotes and little experimental fatigue data 

exists for these very low intensity contractions.  Thus, it remains unclear whether a true 

asymptote exists or whether task failure can eventually occur even at very low task 

intensities (albeit at very long durations).  However, the Cinderella hypothesis posits that 

even very low intensity contractions can lead to musculoskeletal injury (Visser and van 

Dieen, 2006), suggesting even if no ET is predicted, fatigue may remain a concern.   

Several different approaches have been used to model muscle fatigue.  In addition 

to the statistical ET models already described, other analytical models have been 
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developed which predict muscle force decay over time.  Typically these are used to 

represent single muscles and rely on estimates of stimulus impulse inputs (Ding et al., 

2003; Marion et al., 2010).  These approaches, however, are better intended for clinical 

applications where electrical stimulation is employed on an individual basis (Marion et 

al., 2010).  This compartmental, biophysical modeling approach has gained interest with 

applications including: maximal isometric contractions (Liu et al., 2002) and aerobic, 

endurance activities (Ng et al., 2011) in addition to the submaximal isometric 

contractions modeled in this study. 

While these results suggest a certain level of validity for this model, this finding 

should not be over-generalized.  These results were obtained using data for sustained 

isometric contractions only and may or may not translate to other task conditions (e.g. 

isometric tasks with intermittent rest intervals or dynamic contractions).  A second caveat 

is that the optimized parameter values observed in this study were dependent on the 

expected endurance time-intensity equations reported (Frey Law and Avin, 2010).  Both 

the mean curves and the 95% prediction intervals were influenced by the number and 

spread of data points that were available in the literature.  Lastly, as our goal was to 

determine optimal ET predictions (minimizing ET error in sec), the RMS error was 

minimized.  This choice of criterion weights the errors at the lower task intensities more 

than the higher intensities.  This process could be repeated using relative error if desired 

for a particular application or different goal in mind.  However, this alternate approach 

would produce exponentially greater absolute errors at low task intensities.   

While this fatigue model could be used to represent single muscles, or individuals 

at the joint level, that would require experimental data collection for single muscles 

and/or individuals across a range of contraction intensities.  We believe the greater value 

of this model is to predict normative fatigue behavior, so that no additional experimental 
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data are needed.  Accordingly, the model has potential to be used in isolation (when task 

intensity is readily estimated) or incorporated into digital human models that can estimate 

required joint torques (and task intensities) for the completion of a task.   

In summary, the simplistic three-compartmental model produces heuristically 

accurate maximum endurance time predictions across a wide range of contraction 

intensities.  Expected joint differences are well reproduced by differences in optimal F 

and R parameter values.  Future work is needed to ascertain whether this simple 

modeling approach can be extended to predict fatigue when brief rest periods are 

allowed, during dynamic tasks, or how well it can predict recovery times following the 

development of fatigue.  However, this study demonstrates this biophysical model is a 

valid means of predicting fatigue development during sustained isometric tasks across a 

wide range of task intensities. 
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Table 2- 1: Optimal fatigue (F) and recovery (R) parameters by joint region. 

Joint 
Region 

F R Within 
95% PI 

F:R 
Ratio 

Observed 
Asymptote 
(%MVC) 

Predicted 
Asymptote* 

(%MVC) 

Ankle 0.00589 0.00058 8/9 10.2 8.99 8.96 

Knee 0.01500 0.00149 8/9 10.1 9.05 9.04 

Trunk 0.00755 0.00075 8/9 10.1 9.05 9.04 

Shoulder 0.01820 0.00168 8/9 10.8 8.47 8.45 

Elbow 0.00912 0.00094 8/9 9.7 9.36 9.34 

Hand/Grip 0.00980 0.00064 7/9 15.3 6.14 6.13 

General 0.00970 0.00091 8/9 10.7 8.59 8.57 

*Predicted Asymptote = 1/(F:R+1)*100% 
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Table 2- 2: Model accuracy for ET predictions using optimal F and R parameters for 
optimization and test task intensities. 

 Optimization Intensities† Test Intensities‡ 

Joint 
Region 

Mean RMS 
Error (s) 

Mean Relative 
Error (%) 

Mean RMS Error 
(s) 

Mean 
Relative 
Error (%) 

Ankle 11.2 0.6 28.2 -4.0 

Knee 6.7 14.0 15.4 -17.0 

Trunk 9.3 2.2 23.1 -1.9 

Shoulder 2.7 -6.9 6.1 -10.0 

Elbow 9.9 12.0 25.5 7.9 

Hand/Grip 5.6 16.2 6.0 -20.0 

General 7.3 2.4 11.8 -2.0 
† Optimization task intensities: 10% - 90% of maximum, in 10% increments (total of 9 
simulations). 
 
‡ Test task intensities: 15% - 95% of maximum, in 10% increments (total of 9 
simulations). 
 
Note: Errors calculated between predicted and expected ET based on statistical intensity-
ET models previously reported (Frey Law and Avin, 2010). 
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Figure 2- 1: Model predictions using optimal F and R parameter values (optimized 
intensities = circles, test intensities = triangles) by joint: A) ankle, B) trunk, C) 
elbow, D) knee, E) hand/grip, and F) shoulder relative to expected intensity-
endurance time (ET) curves: modeled mean +/- 95% prediction intervals (PI) 
reported by Frey Law and Avin, (2010). Note the change in ET scaling 
between panels.  Insets highlight the higher task intensities.  The ETs which 
fall outside of the 95% PI consistently occur only at the highest intensities 
(>75% – 85% maximum).   
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Figure 2- 2: Example sensitivity analyses for F and R parameter values spanning the 
optimal ranges observed across joints: A) F varying from 0.002 to 0.016 in 
increments of 0.002, with R fixed to optimal value for elbow (0.00094) and B) 
R varying from 0.0002 to 0.0016 in increments of 0.0002, with F fixed to 
optimal value for elbow (0.00912). Note changes in F strongly influence the 
inflection point of the intensity-ET relationship (e.g. asymptote of the curve), 
whereas changes in R refine the ET predictions about this curvature.  
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CHAPTER 3:  

INTERMITTENT FATIGUE: META-ANALYSIS 

Introduction  

Intensity-endurance time (ET) curves for static isometric tasks have been created 

and studied since Walter Rohmert’s original paper (Rohmert, 1960).  These curves have 

been used by ergonomist to calculate work rest cycles and as a way to determine how 

workers fatigue while performing different job tasks.  Recently (Frey Law and Avin, 

2010) compiled a large comprehensive analysis to “update” the Rohmert curves for each 

joint region (ankle, knee, trunk, shoulder, elbow, and hand/grip).  These provide more up 

to date and accurate versions of the static isometric intensity-ET curves first proposed by 

Rohmert and later studied by others (Rohmert, 1960; Monod and Scherrer, 1965; 

Hagberg, 1981; Huijgens, 1981; Sjøgaard, 1986; Rose et al., 2000; Garg et al., 2002; El 

Ahrache et al., 2006).  These curves only represent static muscle contractions, whereas 

workers perform more intermittent and dynamic contractions throughout the work day.  

Unfortunately, there are no muscle fatigue models that represent the development of 

fatigue for these more complex contractions (i.e. intermittent work rest cycles). 

We operationally define intermittent contractions as a repeated series of static 

isometric contractions held for a time followed by a rest period.  The total time of one 

contraction and rest period is referred to as the cycle time (CT).  The percentage of 

contraction ‘on time’ relative to the cycle time is the duty cycle (DC).   While sustained 

static contractions can occur for some tasks, particularly postural muscles maintaining a 

static posture, many other work tasks may be more similar to intermittent contractions.  

Thus, for a fatigue model to be a viable tool for ergonomic analyses, it is important to 

validate the muscle fatigue model for these contractions.   

While numerous authors have reported updated versions of the original intensity-

ET curve, known as “Rohmert’s curve” (Rohmert, 1960; Monod and Scherrer, 1965; 



 

 

31 

 

Hagberg, 1981; Huijgens, 1981; Sjøgaard, 1986; Rose et al., 2000; Garg et al., 2002; El 

Ahrache et al., 2006), there are few statistical models representing fatigue for intermittent 

contractions.  (Iridiastadi and Nussbaum, 2006; Iridiastadi and Nussbaum, 2006b) 

developed a regression model based on experimental data in subjects for shoulder 

abduction tasks.  They found task intensity, DC, and their interaction (intensity x DC) to 

be important predictors of ET.  However, their data only covered a relatively narrow 

region of task intensities and DCs, making translation to a generalized model challenging 

(Figure 3- 1).   Thus there are very few empirical models that are useful for predicting 

muscle fatigue due to intermittent tasks, and no studies have attempted to compile 

additional data from the literature to better develop statistical models, akin to “Rohmert’s 

curves,” for intermittent tasks.   

The purpose of this study is to develop a useful empirical model to predict muscle 

fatigue through a wide range of intensities (1-100 % of maximum) and DC (1-100% of 

cycle time).  A systematic review and meta-analysis of intermittent tasks to fit three 

dimensional statistical models of relative force decline (% decline) as a function of task 

intensity and DC was performed.    

Methods 

A comprehensive review of the literature was conducted to determine a range of 

data points for the % decline across multiple DC’s and maximal voluntary contractions 

(MVC’s) for each joint.  Although ET was the main outcome variable used for sustained 

isometric tasks, the addition of low DCs and task intensities limit the availability of 

studies sustained sufficiently long to collect true ET, based on pilot investigations.  

Instead, the declines in torque production at given points in time were more widely 

available.  For comparison across studies, decay in MVC (% decline) was extracted at a 

selected range of time points: 30, 60, 90, and 120 seconds across all joints.  From each of 

these time points, a statistical model was created with a 95 % confidence interval.  
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Systematic Review of Literature 

A comprehensive systematic literature search of relevant data relating intermittent 

isometric contractions with percent decline of force was performed.  The search criterion 

was completed as previously described by (Frey Law and Avin, 2010).  Searches of the 

following databases were performed: PubMed, Cumulative Index to Nursing and Allied 

Health Literature (CINAHL), Web of Knowledge, and Google Scholar.  A total of 17 

search terms/keyword combinations were used to elicit relevant articles, including: 

Intermittent static fatigue, intermittent fatigue, intermittent isometric, endurance 

intermittent, intermittent and fatigue, isometric and fatigue, and combinations of the 

above with specific joints: ankle, knee, elbow, trunk, shoulder, elbow, wrist/hand.  In 

addition, early results found that studies on creatine supplementation often incorporated 

intermittent tasks in a control group, thus was added as a secondary search term.  The 

inclusion/exclusion criteria below were then implemented to include only studies of 

interest.  

Inclusion and Exclusion Criteria 

The inclusion criteria included: studies with healthy human subjects, ages 

between 18-55 years old, intermittent tasks with force/torque data, a task time of at least 

30 seconds, and published in English.  Exclusion criteria included: dynamic contractions, 

simultaneous multi-joint testing (e.g. squat lifts), functional tasks, body/limb weight as 

primary resistance, and electrically stimulated contractions.  Similar to (Frey Law and 

Avin, 2010), data from patient populations or intervention studies (i.e. creatine 

supplementation) were not used for the analysis, but any control subjects’ data were 

included if available. 

Data Analysis 

All relevant data were compiled in Excel as described by (Frey Law and Avin, 

2010). The authors, number of subjects, whether the subjects were male, female, or 



 

 

33 

 

mixed, the % effort were compiled in the Excel database; additionally the duty cycle and 

the percent decline of the MVC and the standard deviation were recorded.  The initial and 

final force values were recorded and the percent decline was calculated from this data.  

Since this study is only concerned with percent decline at the time points 30, 60, 90, and 

120 seconds, data had to be pulled from graphical data reported in the selected papers.  

The values were extracted using the pixel analysis (Adobe Photoshop, San Jose, CA) 

(Frey Law and Avin, 2010).  The percent decline at the given time points could then be 

included in the Excel database.  Data sets were then established for each joint at each of 

the four time points.  This allows for four graphs per joint at different time points 

throughout the fatiguing process.   Only joints with a minimum of 3 (i.e. three points are 

needed to define a plane) data points were further analyzed at each time point.    

Based on the power relationship observed in the intensity-ET curves for sustained 

contractions (i.e., 100% DC), a linear relationship exists between log transformed ET and 

intensity.  We hypothesized a similar relationship would be present between %decline in 

torque and intensity, as well as with DC.  Accordingly a log transform was applied to the 

collected fatigue data points (% decline) and to the independent variables (MVC and DC) 

from each study.  TableCurve3D was used to fit a plane to the transformed data.  The 

plane equation was then log transformed back to be able to predict the %force decline for 

each discrete time point.  The equation for the surface fits the form of  

Equation 3- 1, where a, b, and c are the model coefficients. 

Equation 3- 1: 3D power-surface example 

 % Force Decline = a ∗ (DC)b(MVC)c 
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Ninety-five percent confidence intervals (95% CI) of the model mean were 

calculated for the generalized fatigue model at each time point.  This was accomplished 

using Equation 3- 2 and Equation 3- 3.  The coefficient of variation (CV) was calculated 

by finding the standard deviation between multiple data points that had the same 

independent variables divided by the mean.  This was done across all data available, 

when a minimum of three data points was available at matching MVCs and DCs. The 

median of all values was used as a global estimate for CV for the complete data set.  The 

complete data set was used instead of each time point due to their being very few data 

points within each time point that had the same DC and MVC.  Thus to gain an accurate 

view of variability the entire data set was used. 

Equation 3- 2: Coefficient of variation calculation  

𝐶𝑉 = 𝑠𝑡𝑑𝑒𝑣/𝑚𝑒𝑎𝑛 

Equation 3- 3: 95% confidence interval calculation 

95% 𝐶𝐼 =  𝑀𝑒𝑎𝑛 ± 1.96(𝐶𝑉 ∗ 𝑀𝑒𝑎𝑛) 

Results  

Literature Review 

The database search strategy resulted in a total of 2781 potential publications.  

Search refinements to include only humans and articles written in English decreased the 

total number of potential articles to 2392.  Of these articles 44 met the required inclusion 

and exclusion criteria.  Since there were so few publications that fit the required inclusion 

and exclusion criteria, static fatigue papers that were used in (Frey Law and Avin, 2010) 
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meta-analysis and fit the inclusion requirements for this study were used to fill in points 

at the extreme of the surface (DC=1).  Of the 194 publications that were used in the prior 

meta-analysis, only 3 fit the required inclusion and exclusion criteria for this analysis, for 

a total of 47 studies (torque decline was typically the limiting factor).   

The meta-analysis found no studies that met the inclusion and exclusion criteria 

for the shoulder and trunk joints, the final number of studies and data points, by joint, 

meeting the required inclusion and exclusion criteria for the rest of the joints is provided 

in Table 3- 1.  Similarly to (Frey Law and Avin, 2010), the hand/grip joint is technically 

not an individual joint, but studies that included grip, first dorsal interosseus (FDI), 

abductor pollicis brevis (APB), and  adductor pollicis (ADP) were condensed under the 

grouping ‘hand/grip’.  The total sample size for each joint (ankle, elbow, hand/grip, knee) 

ranged from 125 (elbow) to 306 (hand/grip). Table 3- 2 provides a summary of how 

many data points were found for each joint at each discrete time point.  The total number 

of data points for each joint ranged from 28 (elbow) –to 68 (hand/grip) with a total of 193 

data points extracted (Table 3- 2). 

Statistical Model 

Empirical %decline models for each joint using the log transform method 

described above were calculated using all the data points collected for each joint and a 

generalized % decline model (Figure 3- 2-Figure 3- 6).  The model coefficients and the 

R2 values for each joint region are described in Table 3- 3. The 95% CI was only 

calculated for the generalized model (Figure 3-7) due to the small number of data points 

used to create the surfaces at the individual joints. 

Discussion 

The goal of this study was to develop empirical muscle fatigue models for 

intermittent tasks for each joint region.  Overall the data appear to be partially consistent 

with our hypothesized surface, relating torque decline to task intensity and DC.  
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Unfortunately there were not enough studies that fit the exclusion and inclusion criteria to 

get surfaces for the shoulder and trunk joint regions.  There were enough data points to 

get surfaces for the other joint regions; however there is very little information in the 

literature for low intensity tasks at low DC.  Instead, most of the research available 

focused on DC and MVCs ≥ 50%, with most of the data at these high regions curve 

fitting to this data become volatile (Table 3- 1).  That is because with most of the data in 

one specific area the surface does not know what direction to pull towards.  This can be 

viewed by observing the hand/grip surfaces (Figure 3- 4).  Since most of the data revolve 

around 50% DC and 100% MVCs the surface peaks at around 50% DC instead of around 

100% DC, which is observed at the other joint regions and is clearly observed in the 

generalized surface (Figure 3- 6).   

This study has determined that more data are needed to improve these empirical 

models, more specifically lower intensities and DC need to be studied.  However, this is 

not an elementary task.  It is already known from numerous studies (Rohmert, 1960; 

Monod and Scherrer, 1965; Hagberg, 1981; Huijgens, 1981; Sjøgaard, 1986; Rose et al., 

2000; Garg et al., 2002) that low intensity continuous isometric tasks can be performed 

for hours before reaching the ET.  This time will be amplified by adding rest periods to 

the task, due to the muscle being able to recover during the rest periods.  For this specific 

reason, this study focused on modeling fatigue due to intermittent tasks on force decline 

instead of the ET. 

This study focus on four time points that were believed to have sufficient data 

available in the literature to create empirical fatigue response curves to compare to our 

fatigue model (Chapter 4).  Although there may still be data available that was not yet 

found, this chapter has outlined a method for developing 3D fatigue response curves at 

various time points for intermittent tasks.  These surfaces can be improved by collecting 

more data points at these lower intensities. Data can also be collected at more time points 
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(e.g. 200, 300, 400 seconds) to get an appropriately more complete picture on how 

intermittent tasks at various intensities and work cycles affect different joint regions. 

Although intensity-ET relationships are currently used for ergonomic analysis, 

modeling the relative torque decline due to intermittent work may be a more useful 

ergonomic tool.  This study developed a model that provides a more developed picture 

into what is occurring at the muscle level (i.e. decline in force production).  Empirical 

muscle fatigue models for intermittent contractions have not been developed for the full 

range of intensities and DC, thus empirical models for static contractions have been used.  

This study has established that empirical models for intermittent contractions can be 

developed and with this information new appropriate rest allowances, or job rotation 

cycles could be implemented.   

More validation efforts and studies are needed due to the current models are only 

appropriate for short task time (< 2 minutes), but these surfaces provide new insight into 

muscle fatigue during intermittent tasks.  This insight could have huge implications in 

ergonomics where the goal is to have the worker be the most effective while at the same 

time keeping the body refreshed and free of musculoskeletal disorders. 
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Table 3- 1: Studies included in the meta-analysis by joint for ankle, knee, elbow, and hand/grip, listed by author 

              Discrete Time Points 

Joint Author, Date N Sex Intensity (%MVC) DC (%) 30s 60s 90s 120s 

Ankle          

 (Alway, 1991) 24 M 100 100    X 

 (Bemben et al., 1996) 101 M 100 40  X   

 (Birtles et al., 2002) 22 MX 100 50    X 

 (Birtles et al., 2003) 10 MX 100 50  X  X 

 (Chung et al., 2007) 12 M 100 50 X X X X 

 (Egana and Green, 2007) 14 M 30,40,50,60,80,90 33  X  X 

 (Fimland et al., 2010) 13 M 100 83 X X X X 

 (Kent-Braun et al., 1994) 8 MX 10 40    X 

 (Kent-Braun et al., 2002) 20 MX 10 40    X 

 (Kent-Braun and Ng, 1999) 8 MX 100 100 X X X X 
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          Discrete Time Points 

Joint Author, Date N Sex Intensity (%MVC) DC (%) 30s 60s 90s 120s 

 (Lanza et al., 2004) 9 M 100 50 X X X X 

 (Russ and Kent-Braun, 2003) 16 M/F 100 50  X  X 

 (Russ et al., 2008) 16 M/F 100 70  X  X 

 (Tachi et al., 2004) 5 M 50 60 X X X X 

 Totals: 14 studies N=278  Range: 10-100 Range: 33-100     

Knee          

 (Armatas et al., 2010) 13 M 100 50 X X X X 

 (Bemben et al., 2001) 19 M 100 50  X   

 (Bigland-Ritchie et al., 1986) 6 MX 50 60 X X X X 

 (Bigland-Ritchie et al., 1986b) 10 MX 50 60 X X X X 

 (Burnley, 2009) 8 M 100 60 X X X X 

 (Hamada et al., 2003) 8 M 100 63 X X X X 

Table 3-1: Continued 
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                      Discrete Time Points 

Joint Author, Date N Sex Intensity (%MVC) DC (%) 30s 60s 90s 120s 

 (Katayama et al., 2006) 6 M 62 50   X  

 (Mazzini et al., 2001) 28 MX 100 50 X X   

 (Ordway et al., 1977) 27 M 100 50 X X X X 

 (Stackhouse et al., 2001) 20 MX 100 71 X X X X 

 Totals: 11 studies N=145  Range: 50-100 Range:50-71     

Elbow          

 (Allman and Rice, 2003) 6 M 60 60  X   

 (Bemben et al., 2001) 19 M 100 50  X   

 (Jakobi et al., 2000) 14 M 50 60 X X X X 

 (Jubeau et al., 2012) 12 M 100 21  X X X 

Table 3-1: Continued 
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                              Discrete Time Points 

Joint Author, Date N Sex Intensity (%MVC) DC (%) 30s 60s 90s 120s 

 (Mazzini et al., 2001) 28 MX 100 50 X X   

 (Muthalib et al., 2010) 10 M 100 21 X X X X 

 (Ordway et al., 1977) 27 M 50 100 X X X X 

 (Taylor et al., 2000) 9 MX 100 50 X X X X 

 Totals: 8 studies,           N=125  Range: 50-100 Range:21-100     

Hand/Grip          

 (Bemben et al., 1996) 101 M 100 40  X   

 (Benwell et al., 2007b) 12 MX 100 70  X  X 

 (Benwell et al., 2007) 8 MX 30 60    X 

 (Benwell et al., 2006) 15 MX 100 70  X  X 

Table 3-1: Continued 



 

 

42 

                              Discrete Time Points 

Joint Author, Date N Sex Intensity (%MVC) DC (%) 30s 60s 90s 120s 

 (Ditor and Hicks, 2000) 12 M/F 100 71 X  X  

 (Duchateau and Hainaut, 1985) 18 MX 86 33, 50, 67 X X   

 (Fujimoto and Nishizono, 1993) 8 M 40 60    X 

 (Fulco et al., 1994) 8 M 50 50  X  X 

 (Fulco et al., 2001) 33 M/F 50 50  X  X 

 (Gonzales and Scheuermann, 2007) 32 M/F 50 50    X 

 (Liu et al., 2005) 12 MX 100 67 X X X X 

 (Pitcher and Miles, 1997) 8 M 80 54 X X X X 

 (Vigouroux and Quaine, 2006) 19 MX 80 50 X X X X 

          

Table 3-1: Continued 
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                                      Discrete Time Points 

Joint Author, Date N Sex Intensity (%MVC) DC (%) 30s 60s 90s 120s 

 (Wood et al., 1997) 20 F 16, 32, 48 21, 31, 63  X  X 

 Totals: 14 studies N=306  Range: 16-100 Range:21-71     

 
  

Table 3-1: Continued 
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Table 3- 2: The number of percent torque decline data points per discrete time point for each joint region 

Joint 30 seconds 60 seconds 90 seconds 120 seconds Total 

Ankle 7 19 7 23 56 

Elbow 6 10 6 6 28 

Hand/Grip 11 20 14 23 68 

Knee 10 12 10 9 41 

General (Total) 34 61 38 61 193 
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Table 3- 3: Model coefficients for each time point by joint, where intensity (MVC) and 
duty cycle (DC) are values between 0 and 100 percent, 
%Decline=a*(DC)b*(MVC)c. 

Model a b c R2 

30 seconds     

Ankle 0.058086 0.35375975 0.80967812 0.592 

Elbow 0.000147 1.3931424 1.2184178 0.778 

Hand/Grip 2.65*10-12 -0.45963195 6.7779481 0.628 

Knee 0.019551 0.6668447 0.82517338 0.202 

General 0.000523 0.96044017 1.3107351 0.346 

60 seconds     

Ankle 0.022638 1.6186979 -0.018837251 0.671 

Elbow 0.003113 1.1300553 0.94296213 0.894 

Hand/Grip 12.38852 -0.22351518 0.20425368 0.018 

Knee 0.009352 1.1569275 0.66653691 0.358 

General 0.133775 0.81883857 0.32617479 0.219 

90 seconds     

Ankle 0.557265 0.81836074 0.082173286 0.534 

Elbow 0.000843 1.1012282 1.3256107 0.990 

Hand/Grip 7.61*10-9 -0.23569634 4.9924243 0.968 

Knee 0.036183 0.89686635 0.67788087 0.470 

General 0.030335 0.88558254 0.68635163 0.457 
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Table 3- 3: Continued 

    

Model a b c R2 

120 seconds     

Ankle 0.01002 1.409681 0.464828 0.858 

Elbow 0.0026 0.99020549 1.216966 0.986 

Hand/Grip 18.53202 -0.30152 0.287124 0.157 

Knee 0.093545 0.77112401 0.61915753 0.317 

General 0.093675 0.765264 0.565585 0.560 
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Figure 3- 1: 3D empirical shoulder fatigue prediction model plotted with the data points 
used to develop the surface. (Iridiastadi and Nussbaum, 2006) 
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Figure 3- 2: Empirical percent torque decline model for the ankle at the four discrete time 
points (30, 60, 90, 120 seconds) and the data points used to create the 
empirical model. 
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Figure 3- 3: Empirical percent torque decline model for the elbow at the four discrete 
time points (30, 60, 90, 120 seconds) and the data points used to create the 
empirical model. 
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Figure 3- 4: Empirical percent torque decline model for the hand/grip at the four discrete 
time points (30, 60, 90, 120 seconds) and the data points used to create the 
empirical model. 
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Figure 3- 5: Empirical percent torque decline model for the knee at the four discrete time 
points (30, 60, 90, 120 seconds) and the data points used to create the 
empirical model. 
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Figure 3- 6: General empirical percent torque decline model at the four discrete time 
points (30, 60, 90, 120 seconds) and the data points from each joint region 
used to create the empirical model.  



53 
 

 
 

 

 

Figure 3- 7: General empirical percent torque decline model at the four discrete time 
points (30, 60, 90, 120 seconds) and the data points from each joint region 
used to create the empirical model.  The 95% CI for each of the models are 
also shown as the colored surfaces. 
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CHAPTER 4:  

PREDICTIVE INTERMITTENT TASK FATIGUE RESPONSE 

SURFACES 

Introduction 

Having a reliable model that can predict muscle fatigue response per joint has 

huge implications in industrial settings.  Muscle fatigue is one risk factor for 

musculoskeletal injury (Sejersted and Sjøgaard, 2000), however there are very few 

available models that can predict muscle fatigue due to sustain isometric contractions.  

There are even less that can accurately predict muscle fatigue responses for intermittent 

tasks.  The relationship between intensity and endurance time (ET) was first studied by 

(Rohmert, 1960).  Since this original publication, others (Monod and Scherrer, 1965; 

Hagberg, 1981; Huijgens, 1981; Sjøgaard, 1986; Rose et al., 2000; Garg et al., 2002; El 

Ahrache et al., 2006; Frey Law and Avin, 2010) have developed updated “Rohmert 

Curves” (review of MET models refer to Table 1-1).  These empirical muscle fatigue 

models for static isometric contractions are useful for determining how muscles fatigue 

under a constant load.  However, these static contractions are not those found while 

performing daily work tasks.   

The types of contractions that are seen in industry are more intermittent in nature 

(i.e. there is a contraction and then a rest period).  (Iridiastadi and Nussbaum, 2006; 

Iridiastadi and Nussbaum, 2006b) developed a regression model for intermittent tasks 

based on experimental data in 90 subjects for shoulder abduction tasks.  However this 

study was focused around a limited number duty cycles (DC) (20-80%) and maximum 

voluntary contractions (MVC) (12-30%).  When Iridiastadi and Nussbaum’s (2006) 

model is expanded to include the full range of DC and MVCs (i.e. 10-100%) the 

empirical model becomes negative at the extremes (Figure 3- 1).  Thus there is a need for 
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a model to be able to predict the muscle fatigue response across the full range of 

intensties and DC. 

Xia and Frey Law, (2008) proposed an analytical fatigue model that was capable 

of predicting fatigue due to a variety of tasks, though it had not yet been validated against 

a “gold standard” empirical model.  The validation of the proposed fatigue model by (Xia 

and Frey Law, 2008), began with optimizing the fatigue parameters (F and R) to a “gold 

standard” isometric intensity-ET relationship (Chapter 2).  The “gold standard” empirical 

model was based on data from a meta-analysis of available literature on sustained 

isometric contractions (Frey Law and Avin, 2010).  This investigation provided evidence 

that the model could predict muscle fatigue for isometric contractions.  However, the 

accuracy of the model (with its optimized F and R parameters for isometric tasks) had yet 

to be investigated for intermittent tasks.  

In order to compare the model against a “gold standard” empirical model for 

intermittent tasks, a meta-analysis of available data for the percent torque decline in force 

for a variety of DC and MVC was conducting (Chapter 3).  percent torque decline was 

chosen over modeling Intensity-ET relationships for intermittent tasks due to the long 

time periods that are needed to get ET information at low intensities at low DCs.  

Intensity-ET relationships such as the curves presented by (Frey Law and Avin, 2010), 

demonstrate that sustained tasks at low intensities (15% MVC) the ET can be upward of 

1.1 hours.  Tasks at low intensities and low DCs would be able to be sustained 

magnitudes longer than the low intensity static task due longer rest periods compared to 

contractions.  Taking this limitation into account it was determined that instead of 

modeling ETs, the percent decline in torque would be modeled.   

The meta-analysis resulted in a “gold standard” empirical fatigue response 

surfaces for determining the percent torque decline for four discrete time points, similar 

to (Frey Law and Avin, 2010).   An empirical 95% CI (eCI) for these surfaces was then 

calculated using the coefficient of variation between the found data points.  These 
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response surfaces and eCI’s were found in order to have a systematic approach to 

validating the predictive response surfaces.  

Though there are many ways to validate this model, percent torque decline 

surfaces will be used to investigate model’s (Xia and Frey Law, 2008) ability to predict 

muscle fatigue due to intermittent tasks.  Thus the goals of this chapter are to: 1) 

qualitatively and quantitatively compare the predicted surfaces vs. the empirical surfaces 

found in Chapter 3 and 2) calculate the predictive 95% confidence interval (pCI) and 

determine what percent of the data points found in by the meta-analysis can accurately be 

predicted by the model. 

Methods 

Using the empirical models developed in Chapter 3 as the “gold standard”, we 

assessed the differences (i.e. errors between the predictive model estimates for & decline 

in force vs the expected values.  First the predictive surfaces were qualitatively analyzed 

with both the data points found by the meta-analysis. The model was run for each of the 

four discrete time points (30, 60, 90, and 120s) in Matlab (Mathworks, Natick, MA).  The 

surface points were exported to SigmaPlot and graphed with the data points found for 

each joint (ankle, elbow, hand/grip, knee, and general) during the meta-analysis (Chapter 

3). 

Then the shapes of the predictive response surfaces were qualitatively assessed 

with the empirical model by graphing each surface on top of each other (SigmaPlot) for 

each joint.  This allowed the shapes to be qualitatively analyzed to determine whether the 

shapes of the predicted surfaces match that of the empirical surfaces. 

Second the predicative response surfaces were quantitatively assessed vs. the 

empirical response surfaces by determining the percent of the predictive surface in 

between the 95% eCI.  The percent of the predicted surface that fit between the 95percent 

torque eCI was determined by comparing the percent torque decline for a range of DC 
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and MVC points (10-100% with steps of 10%) with the 95% eCI.  The absolute and root 

mean square errors were also calculated between the empirical and predictive surfaces for 

each joint at each of the discrete time points in the same manner. 

Lastly, the percent of data points that fell in between the predictive 95% CI (pCI) 

was assessed.  The percent of data points for each joint within the 95% pCI was 

determined for each joint at each discrete time point to analyze the effectiveness of the 

predicted model.  The 95% pCI of the predicative means were calculated for the each of 

the joints with empirical models (e.g. ankle, elbow, hand/grip, and knee) and a 

generalized fatigue model for each of the discrete time points.  This was accomplished 

using Equation 4- 1, where the coefficient of variation (CV) was determined in Chapter 3. 

Equation 4- 1: 95% Predicted confidence interval 

ܫܥ݌	95% ൌ 	݀݁ݐܿ݅݀݁ݎܲ	 േ 1.96ሺܸܥ ∗  ሻ݀݁ݐܿ݅݀݁ݎܲ

Results 

The predictive surfaces were found to qualitatively predict the spread of the data 

points found by the meta-analysis (Figure 4- 1-Figure 4- 5).  The predicted surfaces also 

generally matched the empirical models (Figure 4- 6-Figure 4- 10), except with the 

hand/grip predicted surfaces varying the most from the empirical surfaces (Figure 4- 8).  

The qualitative analysis also found most of the data points found by the meta-analysis fell 

between the 95% pCI (Figure 4- 11-Figure 4- 15). 

From the quantitative analysis, it was found the percent of the predicted surfaces 

within the 95% eCI ranged from 8-95%. The abs error was also found to range from 0.02 

sec to -16.52 sec and the RMS error ranged from 23.62 sec to 238.01 sec (Table 4- 1).  

The percent of the data points from the meta-analysis that fell within the 95% pCI ranged 

from 45 to 100% (Table 4- 2). 
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Discussion 

The shape of the predicated 3D surfaces of percent torque decline as a function of 

intensity and DC were found to resemble the empirical surfaces, except at the hand/grip 

joint (Figure 4- 8).  From this qualitative analysis it can be concluded that the model does 

predict the right percent torque decline response that was determined by the meta-

analysis.   

Quantitative analysis showed the mean absolute errors of the surfaces varied from 

0.02  to -15.10 seconds and the RMS errors varied from 23.62 to 186.25 seconds (Table 

4- 1).  The percent of the predicted surface within the 95% eCI ranged from 30-95% 

(Table 4- 1)This indicates that while there are some large differences from each other 

they are overall very similar in shape.  This provides further evidence that the predictive 

model accurately models what is found experimentally.  However, this is not conclusive 

evidence since the predicted surfaces have not been compared to the data collected.   

The final quantitative analysis that was performed was determining a 95% pCI for 

the model results and determining how well the predictive model predicts the data found 

by the meta-analysis.  The joints with their 95% pCI were graphed with the data points 

found by the meta-analysis (Figure 4- 11-Figure 4- 15).  From these graphs, it can be seen 

that the 95% pCI encompasses most of the data points; this was validated when the 

percent of the data points within the 95% pCI was calculated to range between 45-100% 

(Table 4- 2). 

As briefly mentioned earlier, the predicted 3D surface of the hand/grip joint 

region varies the most qualitatively and quantitatively from the empirical surface.  This 

can be explained by the large number of data points found at the low DC and high 

intensities.  Thus the empirical model becomes steeper at that end of the surface instead 

of at the high DC and high MVC end.  This difference between these surfaces does not 

indicate that the predicted surface is incorrect; instead it highlights the need for more 
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research at a wider range of DC and MVCs so the complete response surface can be 

determined.   

The hand/grip data points from the meta-analysis was shown to be predicted by 

the model fairly well (Table 4- 2).  However this joint region had the fewest number of 

data points are encompassed by the 95% pCI.  This is likely due to the CV being found 

between all joint regions instead of being determined for each joint region individually.  

This was originally done due to the lack of data points for each joint region compared to 

them as a whole.  Thus it was decided to use a general CV instead of being by joint.  

While this joint region shows the need for individual CVs, it also highlights the need for 

more data points at each of the joint regions and discrete time points. 

The validations of the muscle fatigue model have focused around the optimization 

of the F and R parameters (Chapter 2).  It is these parameters that define the response of 

the model.  Chapter 2 showed that these parameters accurately predict the ET of 

isometric contractions at various intensities.  This chapter assumed that the F and R 

parameters would remain the same as the optimized parameters found in Chapter 2.  The 

RMS errors found in Chapter 2 ranged from 2.7 - 28.2 seconds (Table 2-2) for isometric 

contractions.  This validation effort found RMS errors ranged from 23.62-238.01 

seconds.   

While comparing errors between two different tasks (isometric vs. intermittent) 

cannot be quantitatively analyzed, qualitatively it shows that there is more variation 

between the intermittent predicted surfaces vs. the isometric intensity-ET curves.  As 

previously discussed, this could be due to the lack of a complete set of percent torque 

decline data as a function of intensity and DC.  However this could also be due to the R 

parameter being optimized with no rest periods (the R parameter determines the “flow” 

from fatigued to resting).  When the muscle is not contracting different recovery 

mechanisms could be involved, thus the “flow” from fatigued to resting could be faster 

due to increased blood flow, or something else. 
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This study has shown that the predicted 3D surfaces of torque decline as a 

function of intensity and DC are similar to those found by the meta-analysis and can 

predict experimental points (Chapter 3).  From these findings it can be concluded that the 

proposed fatigue model by (Xia and Frey Law, 2008) with the optimized parameters 

(Chapter 2), can accurately predict the percent muscle torque decline due to intermittent 

tasks at these selected discrete time points.   Through this validation effort, the question 

has raised the question whether more data points need to be collect, or if the R parameter 

needs to be modified due to the increased blood flow during rest periods.  Further 

research needs to be done before the model can be called accurate for all types of work, 

and can be used for ergonomics.  Until those research efforts are accomplished this model 

has been proven to be accurate for predicting torque decline as a function of intensity and 

DC for short task durations, up to 120 seconds. 
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Table 4- 1: Errors between the empirical models and the predictive models and the percent of the predictive surface within the 
empirical 95% CI for each joint and at each discrete time point.   

 % Within Empirical 95% CI ABS Error (s) RMS Error (s) 
Joint  30s 60s 90s 120s 30s 60s 90s 120s 30s 60s 90s 120s 
Ankle 76 72 56 30 0.02 8.07 5.10 0.02 34.02 129.63 85.63 52.15 
Elbow 83 95 34 33 -2.12 -2.34 -6.20 -8.30 23.62 28.72 74.82 96.31 
Hand/Grip 8 39 11 33 -5.32 -4.58 -16.52 -10.99 92.66 133.31 228.83 238.01 
Knee 44 30 34 40 -5.37 -9.39 -12.57 -15.10 73.60 115.67 154.59 186.25 
General 30 74 95 79 -3.16 -2.49 -4.46 -6.23 38.85 65.23 72.89 108.67 
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Table 4- 2: The percent of the data points within the predictive 95% CI for each joint and 
at each discrete time point. 

Joint 30s 60s 90s 120s 
Ankle 86% 74% 71% 83% 
Elbow 83% 100% 100% 100% 
Hand/Grip 73% 45% 63% 52% 
Knee 70% 83% 91% 89% 
General 79% 74% 88% 78% 
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Figure 4- 1: Predictive percent torque decline fatigue response surface for the ankle and the data 
points found from the meta-analysis at each discrete time point. 
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Figure 4- 2: Predictive percent torque decline fatigue response surface for the elbow and the data 
points found from the meta-analysis at each discrete time point. 
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Figure 4- 3: Predictive percent torque decline fatigue response surface for the hand/grip and the 
data points found from the meta-analysis at each discrete time point. 
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Figure 4- 4: Predictive percent torque decline fatigue response surface for the knee and the data 
points found from the meta-analysis at each discrete time point. 
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Figure 4- 5: General predictive percent torque decline fatigue response surface and the data 
points found from the meta-analysis at each discrete time point. 



68 
 

 

  

Figure 4- 6: Empirical percent torque decline fatigue response surface (grey) vs. Predictive % 
decline fatigue response surface (color) at the ankle. 
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Figure 4- 7: Empirical percent torque decline fatigue response surface (grey) vs. Predictive % 
decline fatigue response surface (color) at the elbow. 
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Figure 4- 8: Empirical percent torque decline fatigue response surface (grey) vs. Predictive % 
decline fatigue response surface (color) at the hand/grip. 
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Figure 4- 9: Empirical percent torque decline fatigue response surface (grey) vs. Predictive % 
decline fatigue response surface (color) at the knee. 
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Figure 4- 10: Empirical percent torque decline fatigue response surface (grey) vs. Predictive % 
decline fatigue response surface (color), general. 
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Figure 4- 11: Predicted surface and the 95% CI for the ankle at each discrete time point.  Data 
points from the meta-analysis are also shown. 
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Figure 4- 12: Predicted surface and the 95% CI for the elbow at each discrete time point.  Data 
points from the meta-analysis are also shown. 
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Figure 4- 13: Predicted surface and the 95% CI for the hand/grip at each discrete time point.  
Data points from the meta-analysis are also shown. 
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Figure 4- 14: Predicted surface and the 95% CI for the knee at each discrete time point.  Data 
points from the meta-analysis are also shown. 
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Figure 4- 15: General predicted surface and the 95% CI at each discrete time point.  Data points 
from the meta-analysis are also shown. 
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CHAPTER 5:  

CONCLUSION 

Review 

The goal of this thesis was to further develop models of localized muscle fatigue.  

First, optimal parameter values were determined for the biophysical muscle fatigue model 

proposed by Xia and Frey Law, (2008), using empirical intensity-endurance time models 

of sustained isometric contraction data.  Second, new empirical models of torque decay 

were developed using available data from sustained and intermittent isometric 

contractions.  Third, the biophysical fatigue model was compared to these new models 

that incorporate rest intervals using the original parameter values.  This process provides 

validation for the fatigue predictions provided by the fatigue model. 

This three compartment model was adapted from Liu et al., (2002) to include a 

controller and alters the ‘flow’ between compartments to create a single loop between the 

resting, active, and fatigued muscle.  The controller allowed the model to be used for sub 

maximal tasks and the altered flow allowed for recovered muscle (from the fatigued 

state) to return to the resting state rather than immediately to the active state.  This was 

useful for modeling intermittent contractions which incorporate rest intervals, thus 

recovering muscle would not be spontaneously activated.   

The first aim in the validation process (Chapter 2) was to optimize the F and R 

parameters to accurately predict intensity-ET curves.  This was accomplished by using a 

grid search optimization process to optimize to a “gold standard” intensity-ET curve 

(Frey Law and Avin, 2010).  We hypothesized the model with the two optimized 

parameters will be able to reproduce the non-linear intensity-ET relationships found by 

Frey Law and Avin, 2010.  Chapter 2 found that the model was able to reproduce the 

intensity-ET relationships with the optimal F and R parameters for isometric tasks.  
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The next aim in the validation process was to validate the model for intermittent 

tasks.  This step required two stages.  The first stage was to collect data from literature to 

create an empirical model to be used as a “gold standard” for comparing the model 

against (Chapter 3).  A meta-analysis was performed searching for percent muscle force 

decline as a function of duty cycle (DC) and intensity at four discrete time points.  

Empirical models were created from these data points for each joint that had more than 3 

data points (i.e. 3 points are needed to define a plane).   

Our hypothesis the empirical model could be developed using DC and MVC to 

predict the percent toque decline was found to be true.  However, the empirical models 

were created, it was found that most of the data available in the literature, that fit the 

inclusion/exclusion requirements, was centered on high maximum voluntary contractions 

(MVCs) (i.e. >50%) and mid DCs (i.e. around 50%).  This creates volatility at the 

extremes of the surfaces.   

The final aim was to quantitatively and qualitatively assess the predicted model 

surfaces against the empirical surfaces (Chapter 4).  We hypothesized the optimized F 

and R parameters for sustained isometric contractions would be valid for intermittent 

tasks.  From this analysis, it was determined that the predicted models, with the optimal F 

and R parameters, reproduce the empirical models reasonably well and can accurately 

predict the data found by the meta-analysis.  Thus our hypothesis was proven to be 

correct; however more work may need to be done before this is definitively proven. 

Limitations 

While this thesis showed that the model can accurately predict the fatigue 

response surfaces (i.e. % decline as a function of DC and intensity), it should be noted 

that this study had some limitations.  The first limitation is the F and R parameters were 

optimized to isometric intensity-ET curves, and then used to predict % decline surfaces.  

The better approach would have been to use the F and R parameters to predict 
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intermittent intensity-ET curves.  This approach was unfeasible due to the lack of ET data 

at low intensities and DCs.  This is due to ETs being greater than an hour, and no 

researcher has kept a subject performing a task for that long due to the immense amount 

of time that would be required and likely discomfort or boredom of the subjects.  Thus 

large amounts of data for intermittent intensity-ET curves were not available.  Percent 

force decline data at four discrete time points was then chosen, since initial searches 

found more data than the initial search for intermittent intensity-ET curves. 

Although intensity-ET relationships are the current “standard” for assessing 

muscle fatigue; the relative torque decline surfaces for intermittent tasks that were 

developed in this thesis provide further insight into what occurs at the muscle level (i.e. 

decline in muscle force production) during intermittent work cycles.  This insight could 

provide a new method for developing rest-work cycles or job rotation cycles in industry.    

The second limitation of this validation effort was most of the data available in 

the literature, that fit the inclusion/exclusion requirements, was centered on high 

maximum voluntary contractions (MVCs) (i.e. >50%) and mid DCs (i.e. around 50%).  

Having all the data around a small section of the grid created volatility at the extremes of 

the surfaces; which caused some of the surfaces to vary away from the predicted shape of 

the fatigue response surface (e.g. Figure 4-9). This volatility in the surfaces highlights the 

need for more research to be done around the entire range of DCs and MVCs, so a more 

accurate response surface can be created for use independently and/or as a gold standard 

for comparison. 

The last limitation of this study was length of the four discrete time points (i.e. 30, 

60, 90, 120 seconds).  The model is meant to be used as an ergonomic tool for predicting 

muscle fatigue due to a work task.  Unfortunately work tasks often last longer than 120 

seconds.  These four time points were chosen based on the available data, to maximize 

our ability to generate empirical surfaces.  However, it was found that even at these short 
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time periods there was a relatively small amount of data points available.  Ideally a wider 

range of time points (e.g. up to 30 minutes) would be used. 

Future Work 

Even with the limitations  of the validation process, this thesis has provided 

validation to the model proposed by Xia and Frey Law, (2008) for isometric tasks, and 

for short intermittent tasks (i.e. <120 seconds).  Future research is needed to determine 

the relative torque decline at the extremes of the surfaces (i.e., low intensities or DCs) 

over a longer time period.  This will allow for development of more practical empirical 

models of torque decline as a function of task intensity and DC that may be useful as 

ergonomic tools in and of themselves.  In addition it will provide the needed data to 

validate the biophysical model against longer time points using a more accurate response 

surface.     
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